
Geometric interpretation of a CNN’s last layer

Alejandro de la Calle, Aitor Aller, Javier Tovar and Emilio J. Almazán

Image Recognition Team, Nielsen

c/ Salvador de Madariaga 1, 28027, Madrid

corresponding author: alejandro.delacalle.consultant@nielsen.com

Abstract

Training Convolutional Neural Networks (CNNs) re-

mains a non-trivial task that in many cases relies on the

skills and experience of the person conducting the train-

ing. Choosing hyper-parameters, knowing when the train-

ing should be interrupted, or even when to stop trying train-

ing strategies are some difficult decisions that have to be

made. These decisions are difficult partly because we still

know little about the internal behaviour of CNNs, especially

during training. In this work we conduct a methodical ex-

perimentation on MNIST public database of handwritten

digits to better understand the evolution of the last layer

from a geometric perspective: namely the classification vec-

tors and the image embedding vectors. Within this context

we present the problem of the variability across equal set-up

trainings due to the random component of the initialisation

method. We propose a novel approach that guides the ini-

tialisation of the parameters in the classification layer. This

method reduces 12% the variability across repetitions and

leads to accuracies 18% higher on average.

1. Introduction

To this day nobody doubts about the potential of Deep

Learning for addressing Artificial Intelligence (AI) chal-

lenges. Moreover, the Computer Vision field has experi-

enced a revolution where Deep Learning models have sub-

stantially outperformed the state of the art, not only in im-

age classification and detection but also in other domains

such as image processing, 3D modelling or Natural Lan-

guage Processing. Despite its success, an important frac-

tion of the community has strongly criticised the inability

to provide a clear explanation of how CNNs work inside.

Important research has been conducted for the visualisation

of the filters and the activations [12, 8, 2]. These works

provide tools that enable better diagnosis for addressing is-

sues and identifying failure modes. However, we are still far

from a good understanding of neural nets, especially during

training time.

Apart from high level metrics such as accuracy or cross

entropy loss, we do know little about how the dynamics of

filters and classifiers of the model evolve during training.

For instance, it would be helpful to know information about

the distribution of the image features in the latent space, or

even if the parameters have been initialised to locations that

can ensure good convergence. By better understanding the

behaviour of the model insights and how it evolves during

training we should expect better training strategies that im-

prove the accuracy.

Latent features and loss strategies. In order to extend

the understanding of CNNs is common to divide the CNN

into two blocks: namely the block in charge of extract-

ing features of interest from the input image, also known

as embedding or encoding, and the classifier block that re-

ceives the embedding and predicts the correct class. A well

trained network is expected to generate similar embeddings

for images that belong to the same class and dissimilar em-

beddings for different classes. Generating good representa-

tive ans discriminative features is chief to ensure good ac-

curacies on image classification and image retrieval tasks.

Training a CNN for image classification with the standard

cross entropy loss does not ensure good separability of

classes in the embedding space [5, 6]. A common approach

is to train directly the embedding space using pairs of im-

ages [9] or triplets [7]. These losses tend to obtain more

discriminative embeddings than the standard cross entropy

loss. However, since the number of possible pairs/triplets

explode with the size of the dataset, these methods require

a non-trivial process of data mining to generate the pairs

or triplets of interest for training. A popular approach to

avoid data mining is the center loss [11] yet it requires extra

computation to re-calculate the class centres and intra-class

distances at every iteration. Alternatively, some researchers

propose variations of the cross entropy loss that aim at re-

ducing the intra-class distance and increasing the inter-class

distance. The work of W. Liu et al. [5] adds a margin in the

angle of the embedding vector with respect to the correct

classifier, in a similar way that Hinge loss enforces maxi-

mum margins between embeddings and classifier’s bound-

1 79

aries. Furthermore, R. Ranjan et al. [6] noted that the ℓ2-

norm of the feature vectors is a good indicator of the repre-

sentativeness of the image to its class. They proposed the

Crystal loss, which computes the cross entropy loss over

features where all have the same norm. Another interesting

approach was proposed by W. Wan et al. [10] where the em-

bedding space is modelled as a mixture of Gaussian distri-

butions. The loss function aims at increasing the probability

of each instance to its distribution.

Parameters initialisation. A significant amount of

work has been conducted on the initialisation of parameters

and how they can help on mitigating the exploding or van-

ishing gradients, as well as to avoid slow convergence [3, 4].

In the work of B. Ayinde et al. [1] a study was conducted

on how the initialisation methods affected the amount of re-

dundant filters learned. These well known techniques have

a random component that makes each training start from a

different configuration and likely to lead to different train-

ing states. Thus, it is worth studying deeper the variability

across training repetitions and how this variability can be

reduced.

Using the previous research as the seed of our study we

investigated how the backbone of the network and the final

classification layer evolve during training. From a geomet-

ric point of view, we treat the classifier’s weights as vectors

that live in the embedded space. This perspective allows us

to focus on the geometric evolution of both vectors repre-

senting the classifier weights and image embeddings. We

conduct a series of ablation studies to better understand the

interplay between these vectors. Moreover, we explore the

variability across initialisations in unbalanced datasets with

a long tail shape. Finally, we propose a novel initialisation

of the classifiers vectors based on the train set distribution.

Hence, this method reduces the variability in 12% across

initialisations in a long-tail version of MNIST.

This paper is arranged as follows: Section 2 introduces

some background and the geometric approach of this study.

In Section 3 we identify issues associated with standard

training techniques and present a method that mitigates

these issues through a guided initialization of the last layer

vectors. Lastly, Section 4 presents some conclusions and

further work.

2. Background

Convolutional Neural Networks (CNNs) can be divided

in two blocks, as shown in Figure 1, namely the feature

extraction block and the classification block:

• The feature extraction block receives an input im-

age and applies a series of convolutions and pooling

operations with the goal of identifying discriminative

features. The output of this block is a one-dimensional

vector regarded as the image encoding or embedding

Figure 1: Schematic diagram of a convolutional neural net-

work. The network is mainly composed by two parts: the

backbone block and the classifier block.

of the image. If it is well trained we should expect

encodings from the same class to be close together.

These vectors are the input for the classification block.

• The classification block is a classifier with the soft-

max function. Although the classification block can in

general be composed of several dense layers, we will

refer to classification block as the last layer of the CNN

throughout the paper. This layer calculates the class

probability for the input image. It has a linear classi-

fier that performs the linear transformation given by

zc =

N
∑

j=1

Wc,j · xj + bc, (1)

where W ∈ R
C×N is the classifier weight matrix with

C being the number of classes and N the size of the

image encoding, b ∈ R
C is the bias term, x ∈ R

N

is the image embedding i.e. the outcome of the fea-

ture extraction block, and z ∈ R
C is the prediction

class vector. We remove the bias term b throughout for

simplicity. The block also uses the softmax function,

which is a non-linear transformation that produces a

probability distribution across all classes. This func-

tion f(x) is defined as

[f(z)]c =
exp (zc)

∑C

c=1 exp (zc)
, (2)

where [f(z)]c is the probability of the cth class. Note

that the performance of the classifier block is highly

dependent upon the quality of the features. The clas-

sifier will benefit from a well separated class-wise fea-

tures.

During training the network tries to optimise a loss func-

tion through back-propagation and gradient descent. One of

the most common objective functions is the cross-entropy

loss, which measures the difference between the predicted

distribution f(x) and the target distribution p(x) (i.e. the

one constructed from the ground truth). For a given instance

80

the cross-entropy is expressed as follows:

Li = −

C
∑

c=1

[

p(x(i))
]

c
log

[

f(x(i))
]

c
, (3)

where C is the total number of classes.

2.1. Geometric interpretation

We can express Eq. (3) using the geometric notation of

the dot product as follows

Li = −

C
∑

c=1

[

p(x(i))
]

c
×

× log





exp
(

‖W c‖ · ‖x
(i)‖ cos θ

(i)
c

)

∑C

c=1 exp
(

‖W c‖ · ‖x(i)‖ cos θ
(i)
c

)



 , (4)

where θ
(i)
c is the angle between the image encoding (i)

with respect to the classifier vector c. Considering Eq. (4),

we can see that there are two pathways to reduce the loss

according to the two blocks of the network: by updating

the parameters of the backbone, i.e. the feature extraction

block, or by updating the parameters of the classifier.

• Backbone update: This entails updating parameters

of the convolutional filters of the network, eventually

leading to different encoding vectors. From the geo-

metric perspective, in order to reduce the loss the net-

work can reduce the angle θ
(i)
c by moving the encoding

closer to its classifier.

• Classifier update: Updating the classifier block en-

tails updating the classifier’s vectors. The training pro-

cess can yield an increase of |Wc| for the correct class

or/and change the direction of this vector, so the an-

gle θ
(i)
c of the correct class is reduced. Likewise, it can

also reduce the norm of the rest of the classifiers or/and

increase their angles with the encoding by changing

their directions away from it.

3. Experiments and results

In the following experiments we study the interplay be-

tween the image encodings and the classifier layer dur-

ing training. In particular we explore these dynamics

in a dataset with an unbalanced distribution of instances

per class. In our experiments we use as backbone the

ResNet 101 architecture [4] with an embedding of length

2, a batch size of 512, an initial learning rate of 5 × 10−4

that gets divided by 5 at epochs 15th and 80th. We use a

weight decay of 5×10−3, the ADAM optimiser and Xavier

for the initialisation of parameters.

(a) Balanced dataset (b) Unbalanced dataset

Figure 2: Number of instances per class in the dataset,

in case of (a) a balanced dataset, and (b) and unbalanced

dataset.

3.1. Unbalanced dataset

Unbalanced datasets are of great interest due to its pres-

ence in real-world problems. A particular case of unbalanc-

ing is the long-tail dataset. We have modified the MNIST

dataset in a way that the instances are geometrically dis-

tributed across classes following the relation yLT
c = yc ∗ gc

where yc is the number of instances of class c in the bal-

anced dataset, and the down-sampling factor gc is given by

gc = p(1− p)
c

c = 1, . . . , C. (5)

In this study we have set p = 1
2 . The resulting distribution

is shown in Figure 2b. Note that only the train set has been

unbalanced, the test set remains balanced as in the original

distribution of MNIST (Figure 2a).

(a) Unbalanced dataset (b) Unbalanced dataset with

guided initialisation

(c) Classifier areas vs. class

for the unbalanced case

(d) Classifier areas vs. class

for the unbalanced case with

guided initialisation

Figure 3: (a) and (b) Embedded space and classifier areas

for each class respectively, at the end of a training without

restrictions for the unbalanced dataset case. (c) and (d) are

the same as (a) and (b) but using guided initialisation.

Figures 3a and 3c show the resulting embedded space

81

from a training with our unbalanced dataset. The single

most striking observation is that some classes (i.e. 1, 5, 7

and 9) finish the training without classification area. Inter-

estingly, these classes correspond to classes with low rep-

resentation in the train set. We also observe that classes

with higher presence in train tend to overcome the adjacent

classes with less presence, up to a point where the minority

classes are left without area.

Furthermore, we have seen in our experiments that the di-

rection of the classification vectors withstand little variation

during the course of training, as depicted in Figure 4.

(a) Initial state of the classi-

fiers’ vectors

(b) Final state of the classi-

fiers’ vectors.

Figure 4: State of the classifiers’ vectors during training

time.

The previous observations evidence the importance of

the initialisation, especially in long-tail datasets. The evolu-

tion of the accuracy for three different experiments that have

been randomly initialised reveals high variability among

repetitions, where each training leads to different accura-

cies, from 95% to 64% in train and from 50% to 33% in

test. A difference of 31% and 17% in train and test respec-

tively for trainings with the same set of hyperparameters

and number of epochs.

To mitigate this effect, we propose a novel approach that

consists on a guided initialisation where classification vec-

tors of classes with similar number of instances are located

next to each other. This approach reduces the competition

between high and low-represented classes, and therefore the

areas of the former will not push out of the embedded space

the areas of the latter.

In Figures 3b and 3d the results of the guided initialisa-

tion are shown. We observe how the absent areas of the pre-

vious experiment are now present in the embedded space.

In addition, variability among trainings has been reduced to

4% and the final test accuracies are 18% higher in average.

Hence, trainings using guided initialisation turns out to be

more robust, especially when training unbalanced datasets.

4. Conclusions and Future Work

In this work we have studied from a geometric perspec-

tive the dynamics of CNNs during training time. Specifi-

cally, we have explored the interplay between classification

and image encoding vectors in the final layer space as the

training progresses.

Furthermore, we have shown how unbalanced datasets

are highly sensitive to the randomness of the initialisation,

reporting up to 17% accuracy difference in test across rep-

etitions. We propose a novel approach to initialise the clas-

sification layer parameters that reduces this variability to

4%. This method sets the initial direction of the vectors in a

way that the competition for the classification area happens

between classes with similar number of training instances.

Hence, minimising the risk of absent areas for classes with

less presence in train. Moreover, this method yielded accu-

racies 18% higher in average, suggesting that it sets more

robust initial states that lead with more frequency to good

local minima.

References

[1] B. O. Ayinde, T. Inanc, and J. M. Zurada. On Correlation

of Features Extracted by Deep Neural Networks. arXiv e-

prints, page arXiv:1901.10900, Jan. 2019. 2

[2] A. Binder, S. Bach, G. Montavon, K.-R. Müller, and

W. Samek. Layer-wise relevance propagation for deep neural

network architectures. In ICISA. Springer, 2016. 1

[3] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. Proceedings of

Machine Learning Research. PMLR, 2010. 2

[4] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rec-

tifiers: Surpassing Human-Level Performance on ImageNet

Classification. arXiv e-prints, 2015. 2, 3

[5] W. Liu, Y. Wen, Z. Yu, and M. Yang. Large-Margin Softmax

Loss for Convolutional Neural Networks. arXiv e-prints,

page arXiv:1612.02295, Dec. 2016. 1

[6] R. Ranjan, A. Bansal, H. Xu, S. Sankaranarayanan, J.-C.

Chen, C. D. Castillo, and R. Chellappa. Crystal Loss and

Quality Pooling for Unconstrained Face Verification and

Recognition. arXiv e-prints, 2018. 1, 2

[7] F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-

fied embedding for face recognition and clustering. In Pro-

ceedings of the CVPR, pages 815–823, 2015. 1

[8] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,

D. Parikh, and D. Batra. Grad-cam: Visual explanations

from deep networks via gradient-based localization. In IEEE

ICCV, 2017. 1

[9] Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning

face representation by joint identification-verification. In Ad-

vances in neural information processing systems, 2014. 1

[10] W. Wan, Y. Zhong, T. Li, and J. Chen. Rethinking Fea-

ture Distribution for Loss Functions in Image Classification.

arXiv e-prints, page arXiv:1803.02988, Mar. 2018. 2

[11] Y. Wen, K. Zhang, Z. Li, and Y. Qiao. A discriminative fea-

ture learning approach for deep face recognition. In ECCV,

pages 499–515. Springer, 2016. 1

[12] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In ECCV, pages 818–833. Springer,

2014. 1

82

